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Abstract 

We compute exact solutions of two-matrix models, i.e. detailed genus by genus expressions for 
the correlation functions of these theories, calculated without any approximation. We distinguish 
between two types of models, the unconstrained and the constrained ones. Unconstrained two-matrix 
models represent perturbations of c = 1 string theory, while the constrained ones correspond to 
topological field theories coupled to topological gravity. Among the latter we treat, in particular 
detail, the ones based on the KdV and on the Boussinesq hierarchies. 
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1. Introduction 

Matrix models represent sums over discretizations of Riemann surfaces, possibly with 
some additional interactions. They are believed to provide a (discrete) description of two- 
dimensional gravity coupled to matter. One-matrix models have been widely investigated, 
but their content is rather poor. The structure of multi-matrix models is much richer but not 
yet known as carefully as for one-matrix models (see [l-14]). 

In this paper, we concentrate on two-matrix models with bilinear coupling and show how 
to find exact solutions. By exact solutions we mean detailed genus by genus expressions 
for the correlation functions of these theories, calculated without any approximation. In 
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particular, we do not limit ourselves to exhibiting recursion relations which allow one to 
compute correlators, but develop techniques to explicitly solve them. 

The idea at the basis of our treatment of two-matrix models, outlined in [ 151, is to 
transform the initial functional integral problem into a discrete integrable linear system 
subject to some constraints (the coupling conditions). We end up in this way with the 
discrete Todalattice hierarchy. The latter underlies all ourcalculations: our aim is to compute 
the correlation functions (CFs) of each model, which in turn may be expressed in terms 
of the integrable flows of the Toda hierarchy, subject to the coupling conditions. This is 
the general setting for unconstrained two-matrix models (which simply denote two-matrix 
models defined by specific potentials without any further conditions). 

We will also consider other models, obtained by suitably constraining the previous (un- 
constrained) models. Their cot-relators can be expressed either in terms of the flows of a 
reduced differential hierarchy or in terms of suitably renormalized flows of the discrete 
Toda hierarchy. In the process of solving these models we find a new way of extracting 
integrable differential hierarchies from the Toda lattice hierarchies. 

Unconstrained two-matrix models describe various perturbations of c = 1 string theory at 
the self-dual point. Constrained models correspond to well-known topological field theories 
coupled to topological gravity. 

The paper is organized as follows. In Section 2 we collect the results obtained in previous 
papers which will be necessary in the following. In Section 3 we discuss and calculate CFs of 
unconstrained models. Section 4 is a short summary of how to obtain differential hierarchies 
from the Toda lattice flows and reduced hierarchies via hamiltonian reduction. In Section 5, 
from the reduced hierarchies we construct a series of models, named reduced models, which 
have a topological field theory meaning: we show in particular how to compute all genus 
correlators. The reduced models turn out to be embedded into the constrained two-matrix 
models, which are studied and solved in Section 6. 

2. General properties of two-matrix models 

The model of two Hermitian N x N matrices Ml and M2, is introduced in terms of the 
partition function 

Z,v(t, C) = dM1 dMze”“, L’= VI +h+gM1M2 (2.1) 

with potentials 

(2.2) 

where pa are finite numbers. These potentials define the model. We denote by M,, ,p2 the 
corresponding two-matrix model. 

We are interested in computing correlation functions (CFs) of the operators 

tk = trMf, ffk = trMi, Vk, x = tr(Mt Mz). 
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For this reason we complete the above model by replacing (2.2) with the more general 
potentials 

v, = ~tlY,&. o= 1,2, (2.3) 
r=l 

where tcr,r = f,,, for r 5 pa. The CFs are defined by 

(rr, ...rr,asj -..4r,Xt) = 
p+m fi 

all,,, . . . ab, at2,s, . . . at2,s,ag1 
In ZN(t, s>, (2.4) 

where, in the right-hand side, all the ta,r except t,,, are set to zero. 
In other words we have embedded the original couplings i,,, into two infinite sets of 

couplings. Therefore we have two types of couplings. The first type consists of those cou- 
plings (the barred ones) that define the model: they represent the true dynamical parameters 
of the theory; they are kept non-vanishing throughout the calculations. The second type 
encompasses the remaining couplings, which are introduced only for computational pur- 
poses and are set to zero in formulae like (2.4). In terms of ordinary field theory the former 
are analogous to the interaction couplings, while the latter correspond to external sources 
(coupled to composite operators). From now on we will not make any formal distinction 
between them. Case by case we will specify which are the interaction couplings and which 
are the external ones. Finally, it is sometime convenient to consider N on the same footing 
as the couplings and to set t1.0 E t2.o E N. 

The path integral (2.1) is an ordinary integral in the matrix entries and it is certainly well 
defined as long as a negative coupling i,,, with highest even r guarantees that the measure 
is square-integrable and decreases more than polynomially at infinity. For the time being let 
us suppose that this is so. Later on we will extend our problem to a larger coupling space. 

We briefly recall the ordinary procedure to calculate the partition function. It consists of 
three steps [ 17-191: 

(i) One integrates out the angular part so that only the integrations over the eigenvalues 
are left. 

(ii) One introduces the orthogonal manic polynomials 

.$ (h 1) = h; + lower powers, )7,(h2) = h!j + lower powers, 

which satisfy the orthogonality relations 

s dhl dh2~~((hI)e~L(h’,~2)rl,(h2) = h,(t, c)iL, (2.5) 

where 

@.(~I, h2) = Vl@l) + V2@2) + Chlk2 

(iii) Using the orthogonality relation (2.5) and the properties of the Vandermonde determi- 
nants, one can easily calculate the partition function 

N-l 

ZN(t, C) = COnst N! n hi. (2.6) 
i=O 
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2. I. From path integral to integrable systems 

From (2.6) we see that knowing the partition function means knowing the coefficients 

h,(t, c). 
The crucial point, from our point of view, is that the information concerning the latter 

can be encoded in (1) a suitable linear system subject to certain (2) coupling conditions, 
together with (3) relations that allow us to reconstruct Z,v. But before we pass to these three 
elements we need some convenient notations. For any matrix M, we define 

M = H-‘MH, Hij = hiaij, Mij = Mji. M/(j) G Mj.j-/. 

As usual we introduce the natural gradation 

deg[Eij] = j - i, where (Ei.j)k./ = 6i.kaj.l 

and, for any given matrix M, if all its non-zero elements have degrees in the interval [a, b], 
then we will simply write: M E [a, b]. Moreover M+ will denote the upper triangular part 
of M (including the main diagonal), while M_ = M - M+. We will write 

N-l 

Tr(M) = C Mii. 
i=O 

The latter operation will be referred to as taking the finite trace. 
Next we pass from the basis of orthogonal polynomials to the basis of orthogonal functions 

!Pn(hl) = eV1(hl){n(hl), Qn(k2) = e”*(‘*)q,()12) 

The orthogonality relation (2.5) becomes 

dh) dh2~~((hI)eCA:lh2~,(h2) = Snmhn(t, c). (2.7) 

We will denote by P the semi-infinite column vector (PO, Lyt , i$, . , )’ and by @ the 
vector (@u. @I, @2,. . . , )‘. 

Then we introduce the following Q-type matrices 

I dhl dbC,(hlW,e CAlA2@m(h2) = Q,,(cr)h, = ~,,&)h,, (Y = 1, 2. (2.8) 

Both Q( 1) and &(2) are Jacobi matrices: their pure upper triangular part is I+ = xi Ei,;+) . 
Besides the above Q matrices, we will need two P-type matrices, defined by 

(2.9) 

(2.10) 

For later use we also introduce 
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‘@ /d& dhz ( a, T&%@I) expI&@l) + V:,(h) +ch1h2hm(h2) = P&(1&, ) 

(2.11) 

s 
dkl d&&(~t)expIVt(hi) + V~(h2) +ch1&1 (&%&2)) = p;,(2)h,. 

(2.12) 

Let us come now to the three elements announced above. 
(1) Coupling conditions. The two matrices (2.8) we introduced above are not completely 

independent. More precisely both Q(cx)‘s can be expressed in terms of only one of them 
and one matrix P. Expressing the trivial fact that the integral of the total derivative of the 
integrand in Eq. (2.7) with respect to ht and h2 vanishes, we can easily derive the constraints 
or coupling conditions: 

P(1) + cQ(2) = 0, cQ(1) + P(2) = 0. (2.13) 

From the coupling conditions it follows at once that, if we set to zero the external couplings, 

Q(a) E i--m,, n,l, a = 1,2, 

where 

ml = p2 - 1, m2 = 1 and n1 = 1, n2 = pl - 1, 

where pu, cx = 1, 2 is the highest order of the interacting part of the potential V, (see 
above). 

(2) The associated linear systems. The derivation of the linear systems associated to our 
matrix model is very simple. We take the derivatives of Eq. (2.7) with respect to the time 
parameters tu,r, and use Eq. (2.8). We get in this way the time evolution of @, or discrete 
linear system I: 

a 
-‘J’((hl) = -QkW-WA 
at2.k 

(2.14) 

The corresponding consistency conditions are 

[Q(l), P(l)1 = 1, (2.15a) 

&Q(l) = [Q(l), Qk(&l, a! = 1.2. (2.1 Sb) 

In a similar way we can get the time evolution of Cp via a discrete linear system II, whose 
consistency conditions are 
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@(2), pm1 = 1, (2.16a) 

I& Q(2) = [QkW+, QG’II (2.16b) 

We recall that one can write down flows for P( 1) and P(2), but they will not be used in this 
paper. 

(3) Reconstructionformulae. The third element announced above is the link between the 
quantities that appear in the linear system and in the coupling conditions with the original 
partition function. We have 

& In ZN (t, c) = Tr(Q’(aY)), (Y = 1,2. (2.17) 
(1.) 

It is evident that, by using Eqs. (2.15b) and (2.16b) above we can express all the derivatives 
of Z,v in terms of the elements of the Q matrices. For example 

ij2 

atI. l at,,, 
ln ZN(t, c) = (Q’(~))N,N-I, CY= 1.2 (2.18) 

and so on. We recall that the derivatives of F(N, t, c) = In ZN(t. c) are nothing but the 
correlation functions of the model. 

We can summarize the content of this section in the following: 

Proposition 2.1. The correlators (2.4) can be expressed in terms of the entries of the ma- 
trices Q( 1) and Q(2) via Ea. (2.17) and the like. In turn, these matrices must satisfi the 
coupling conditions (2.13) and the consistency conditions (2.15a)-(2.16b). 

Knowing all the derivatives with respect to the coupling parameters we can reconstruct 
the partition function up to an overall integration constant (depending only on N). The 
reconstructed free energy F will be a power series in the external couplings. 

This theorem was proven in [ 151. It is arigorous result when, for example, highest negative 
even couplings guarantee that the measure in (2.5) is square-integrable and decreases more 
than polynomially at infinity. But for generic values of the couplings the above derivations 
are merely heuristic. 

However we notice that the consistency and coupling conditions make sense for any 
value of the couplings, and also when the couplings are infinite in number. In the latter case 
Eqs. (2.15b) and (2.16b) form nothing but a very well-known discrete integrable hierarchy, 
the Toda lattice hierarchy, [20] (see also [21]). From these considerations it is clearly very 
convenient to refer to the integrable system formulation rather than the original path integral 
formulation of our problem. This allows us not only to extend our problem to a larger region 
of the parameter space, but also to make full use of integrability. Therefore we shift from 
the original problem to the new formulation: 

We call (unconstrained) two-matrix models as all those models obtained by spectfying 
a partition of the couplings between internal and external couplings. Each such model is 
based on the Toda lattice hierarchy and characterized by specific coupling conditions. 
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Statement of the problem. Solve the integrable Toda lattice hierarchy subject to the cou- 
pling conditions specific of a particular unconstrained model and compute the correlators 
as functions of the internal couplings via the relations 

(rr) = Tr(Q(l)‘), (as) = Tr(QCW) (2.19) 

and the like. 

Once all the correlators are known, one can reconstruct ’ the free energy F by means of 

a 
-F(N, t, cl = (~1, 
ah,, 

a 
-F(N, t, c) = (a,). 
at2.r 

F will be a formal power series in the infinite set of external couplings. 
Henceforth this will be the setup we refer to. 
To end this subsection, we collect a few formulae we will need later on. First, we will be 

using the following coordinates of the Jacobi matrices: 

Q(1) = I+ + T Fal(i)Ej,i-r. 
i I=0 

One can immediately see that 

(2.21) 
i 1~0 

<Q+(l>)ij = aj,i+l + ao(i)ai,j, (Q-(2))ij = R(i)Gj,i_l, (2.22) 

where R(i + 1) 3 hi+t/hi. As a consequence of these coordinates, Eq. (2.18) gives in 
particular the two important relations 

a2 
- F(N, t, c) = al(N). 
at:. I 

(2.23) 

Finally we write down explicitly the tl, I- and t2,1 -flows, which will play a very important 
role in what follows: 

a 
-uar(j) = w+i(j + 1) - ar+~(j) + al(j>(uo(j> - ao(j - I)), 
atI,] 

a 
--w(j) = R(j -l+ lh-l(j) - R(j)+l(j - I), 
at2, 1 

a 

(2.24a) 

-h(j) = R(j - I+ l)h-I (j) - R(j)br-1 (j - l), 
at,,, 

a 

(2.24b) 

----l(j) = br+~ (j + 1) - b/+t (j) + bl(j)(bo(j) - bo(j - I)). 
at2, I 

(2.24~) 

(2.24d) 

’ Up to a constant depending only on N. There is a way to determine this constant too, see [ 161, but we will 
not dwell upon this point here. 
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2.2. w, constraints 

To solve the above stated problem we have to solve the flow equations of the Toda 
lattice hierarchy subject to the coupling conditions (2.13). There is a way to put together 
flow equations and coupling conditions that lead to an elegant algebraic structure, the W 
constraints: 

Proposition 2.2. The partition function of the unconstrained two-matrix models satis$es 
the following W constraints: 

W”‘Z&t, c) = 0, ,I bP’Z,&, c) = 0, n r 2 0; n > -r, _ (2.25) 

where 

WA” 5 (-c)“C~‘(l) - C”,+“‘(2), 

I+!” GE (-c)“C32) - P,+“‘( 1). 

(2.26a) 

(2.26b) 

The generators CL’(l) are differential operators involving N and tl,k, while L:‘(2) have 
the same form with tl ,k replaced by t2.k. One of the remarkable aspects of (2.25) is that the 
dependence on the coupling c is nicely factorized. The &I( 1) satisfy the following W, 
algebra: 

[c;“(l), L;‘(l)] = (n - m)L$,(l), (2.27a) 

[C12’(1) 

]Lr;l(l) 

Cl”(l)] = (n - 2rn)1?~’ ’ m .+,(l) +mtm + w;y,u), (2.27b) 

C12’(1)] = 2(n - m)LCL3’ n ‘in .+,(l) - (n - m)(n + m + 3)Ci?,(l), (2.27~) 

and in general 

[L!‘(l), C~‘(l)] = (sn - rrn)C~~f-l’(l) +. .. , (2.28) 

for r, s > I; n 2 --I, m 2 -s. Here dots denote lower than r + s - 1 rank operators. We 
notice that this W, algebra is not simple, as it contains a Virasoro subalgebra spanned by 
the Ci”( 1)‘s. For this reason, it is often called WI+~ algebra. We also see that once we 
know these generators and C[_2;( l), the remaining ones are produced by the algebra itself. 

The algebra of the C!‘(2) is just a copy of the above one, and the algebra satisfied by the 
WA” and by I@[’ is isomorphic to both. 

The derivation of the W constraints is very simple [ 151. It consists of taking the coupling 
conditions (2.13), multiplying them by powers of Q( 1) and Q(2), taking the finite trace 
and using the flow equations of the Toda lattice hierarchy. This was done in detail in Ref. 
[15]. There, one can also find explicit expressions of the generators, see also [22]. 

2.3. Homogeneity and genus expansion 

The CFs we compute are genus expanded. The genus expansion is strictly connected 
with the homogeneity properties of the CFs. As we will see the contribution pertinent to 
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any genus is a homogeneous function of the couplings (and N) with respect to appropriate 
degrees assigned to all the involved quantities. Precisely, we assign to the couplings the 
following degrees: 

W 1 = [ I, ]&,kl = Y - yolk, [Nl = y, [cl = y - yt - ~2, (2.29) 

where y, yt , y2 are arbitrary constants. Here and in the following N is treated as a coupling 

h,o = f2,o. 

If we rescale the couplings as 

on the basis of the analysis of Bessis et al. [ 171, we expect the free energy to scale like 

2y(l-w~(w 

h=O 

(2.30) 

where Fch) is the genus h contribution. In other words 

[F(h)] = 2y(l -h). (2.3 1) 

The CFs will be expanded accordingly. Such expectation, based on a path integral analysis, 
remains true in our setup due to the fact that the homogeneity properties carry over to the 
Toda lattice hierarchy. To this end we have simply to consider a genus expansion for all 
the coordinate fields that appear in Q(1) and Q(2), see (2.21), (2.22). The Toda lattice 
hierarchy splits accordingly. In genus 0 the assignments 

bI’o’l = (1 + l)Yl, [b(O)1 = (1 + l)y2, I [R’“‘l = Yl + Y2 (2.32) 

correspond exactly to the assignments (2.29) and [F(O)] = 2y. 
It is very common to replace the matrix size N with a continuum variable, say x. This 

is permitted provided one rescales all the quantities involved according to the above de- 
grees, [ 161. 

3. Correlation functions in (unconstrained) matrix models 

We have (at least) three methods to calculate CFs. The first consists of directly solving the 
W constraints; the second consists of determining from the coupling conditions the explicit 
form of Q( 1) and Q(2) and then using the flows of the discrete Toda lattice hierarchy; the 
third method is based on passing from the discrete hierarchy to a purely differential one and 
integrating the flows of the latter. The first method has been shown in a number of examples, 
[16,22]. Moreover we will see it at work in the constrained models. Therefore we skip it 
here and pass directly to the second method. 
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3.1, Solving the coupling conditions:M2.2 model 

This method is based on explicitly solving the coupling constraints (2.13). It is then 
elementary to compute cot-relators by means of Eq. (2.17) and the lattice Toda flow equations. 
First we discuss in detail the model M2.2, i.e. the purely Gaussian case. For simplicity we set 

t2.k = Sk. 

Lemma 3.1. The matrices Q(1) and Q(2) relevantfor the model M2.2 are specij’ied, with 
reference to the coordinates (2.21), (2.22), by 

a{)(n) = ag = 
CSI - 2s2t1 2s2n 

4s2t2 - c2 ) 
al(n) = - 

4s2t.J - c2 * 

ho(n) E bo = 
ct1 - 2t2s, 

4s2t.2 - c2 ) 
b!(n) = - 

2tzn 

4s2tz - c2 ( 
R(n) = 

4s2t:y 6. 
(3.1) 

The remaining coordinates vanish. 

ProojI The coupling conditions (2.13) for the model M2.2 are 

p”(l) + tl + 2t2Q(l) + cQ(2) = 0, 

7%) + SI + 2s2Q(2) + cQ(l) = 0. 

Using the fact that P,O,_l (i) = n for i = 1,2, h t ey can be explicitly written in terms of the 
coordinates as 

2tzR(n) + cbl (n) = 0, 

tl + 2tzao(n) + cbo(n) = 0, 

n + 2t2al (n) + CR(n) = 0, 

cal (n) + 2.~2 R(n) = 0. 

.~I + cao(n) + 2s2bo(n) = 0. 

cR(n) + 2s2bl (n) + n = 0. 

These equations can be easily solved and give (3.1). 0 

Proposition 3.2. The exact one-point and two-point correlators of the model MI,? are 
given b) 

(Tr)=2$o& (r -2;)!iii/ -k)! (1 -Z+ 1) Cc2 Is&t,)‘-’ 

( 2s2t1 - CSI r-21 
X 

c2 - 4s2t2 > 

Proo$ To start with it is convenient to rewrite Q( 1) and Q(2) as 

(3.2) 

(3.3) Q(i)=uiZ++piZ+yie_, i=l,2, 
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co 

I+ = c &,+I, 1 = 2 En,n, E- = ~n-%-I. 
n=O i=O n=l 

and 

UyI = 1, 

2t2 
a2 = --) 

C 

Bl = ao, y1 = 2s2 
c2 - 4s2t2 ) 

82 = hot Y2 = 
4s2t2C_ c2. 

(3.4) 

By means of the formulae 

N-l 

[I+, E-l = 1, Tr(~~z~)=,,,~~~=,,,,k!(,:l), (3.5) 

we can now make explicit computations. For example 

Tr(Q(1)‘) = 2$. (;) Tr(l+ + YI~-)~~B;-~' 

r!2-k 
(3.6) 

From this formula, using (2.17), we can immediately get Eq. (3.2). In a similar way we can 
derive (a,). 

Finally using the genus expansion (2.30) we can extract the genus by genus correlators.0 

Corollary 3.3. The genus h contributions to the one- and two-point CFs in the model M2.2 
are 

where 

bk (r) = c rlr2 . . . rk, lsklr, 

(3.7) 

Due to the B factor the sum over 1 in (3.7) starts at 2h and the sum over k ends at 2h. 
For the two-point correlators, see Appendix A. 
We have given the above proof in some detail since it constitutes a model for all the 

other more complicated cases. In fact there is nothing new when we consider the M,,I 
models. They can be solved exactly in the same way. New features appear in the case of 
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the M,, .ll2 models with ~1, p2 > 1 and pt + p2 > 4, since the constraints give rise to 
non-linear algebraic relations for the coordinates. Let us see the simplest possible example 
of this situation. 

3.2. Solving the coupling conditions: M3.2 model 

The coupling conditions of the M~,J model are 

PO(l) + 3tjQ(l)’ +&Q(l) + t, + cQ(2) = 0, 
p”(2) + 2s2Q(2) + st + cQ( 1) = 0. 

(3.8) 

Usingthecoordinates(2.21)and(2.22) we find that thefieldsal(n). b/(n), R(n) must satisfy 
the equations: 

cbz(n) + 3tjR(n)R(n - 1) = 0, 

2tzR(n) + cbl (n) + 3tjR(n)(ao(n) + U&I - 1)) = 0. 

3t3(W(02 + al(n) + al (n + 1)) + 212uO(n) + tI + &o(n) = 0, 

n + 3tPl (n)(uo(n) + uo(n - 1)) + 2t2ul(n) + CR(~) = 0, (3.9) 

2.~R(n) +cul(n) = 0, 

2szho(n) + SI + cue(n) = 0. 

II + 2s2bl (n) + CR(n) = 0. 

One easily realizes that the second, fourth, fifth and seventh equations are linearly dependent. 
Finally one has 

ho(n) = - 
$1 +cuo(n) 

2.Q T 

hi(n) = - 
n + CR(~) 3t3 

2s2 ’ 
bz(n) =---R(n)R(n - 1). 

C 

and the recursion relations: 

(3.10) 

(3.1 I) 

These recursion relations can be solved exactly in complete generality, although the final 
formulae may look very cumbersome. However, for our present purposes, it will be sufficient 
to see the solutions in genus 0. In genus 0 the above equations become: 

us = -sR(n), ho(n) = - 
SI + cue(n) 

C 2s2 9 
(3.12) 

b](n) = - 
n + CR(n) 3t? 

2s2 ’ 
b(n) = ---R(n)‘, 

C 
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and the recursion relations 

(3.13) 

This leads to a cubic equation for au. Once this equation is solved with the standard formulae, 
all the fields are completely determined. Since they are not particularly illuminating, we do 
not write down here the explicit solutions. We notice however that, once we know them, it 
is possible to write down immediately an integral expression for the correlation functions. 
For example, using the same formulae as in the previous subsection, one gets 

r! 
x 

((r - 1)92(21 - r)! s 
dna2i-Tar-1 

0 1’ (3.15) 

where Go, tit are the solutions of the above algebraic system, and we have promoted n and 
N to continuum variables and called the latter X. In a similar way we can obtain all the 
correlators we wish. 

As we see from this example, the method is the same as in the M2,2 model, the only 
additional difficulty being the solution of a third-order algebraic equation. When we come 
to more complicated M,, ,P2 models, the method remains the same but we are faced with 
the problem of solving higher-order algebraic equations. 

It has been shown in [ 161 (see also [23]) that the model Mo,o represents the c = 1 string 
theory at the self-dual point. Any M,, ,P2 model represents the perturbation of the former by 
the corresponding tachyonic states. We have shown that these perturbations can, at least in 
principle, be solved. However, we do not see any point in pushing the analysis further in this 
direction. We would rather like to concentrate from now on a related interesting problem: 
can one obtain from non-Gaussian M,, ,P2 models ‘simple’ submodels, in the sense that, 
for example, the correlators are polynomials of the couplings? The answer is yes, and the 
submodels are obtained by imposing constraints in the coordinates of the M,, ,P2 models. 
The submodels are called constrained two-matrix models and to the analysis of some of 
them are devoted the next three sections. 

4. Differential hierarchies of two-matrix models 

One possible characterization of the constrained models is by means of the differential 
integrable hierarchies they correspond to. 

Let us return to Section 2. We saw there that two-matrix models can be represented 
by means of coupled discrete linear systems, whose consistency conditions give rise to 
the Toda lattice hierarchy. Here we review the method, used in [ 151, to transform the 
discrete linear systems into equivalent differential systems whose consistency conditions 
are purely differential hierarchies. This is tantamount to separating the N dependence from 
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the dependence on the couplings. This section is introduced for the sake of completeness: 
we collect and try to render as plausible as possible the results obtained in [ 15,241 we will 
need in the following. 

The clue to the construction are the first flows, i.e. the tt ,I and t2.1 flows. For the sake 
of simplicity let us consider the system I and the flow (2.24a). Let us consider the generic 
situation in which Q( 1) has ml = p2 - 1 lower diagonal lines (see the parametrization 
(2.21)). To begin with we notice that 

a 
-RI = *rl+1 +ao(n)Pn 
atI 

(4.1) 

and adopt for any function f(t) the convention f’ z af/atl,l s af. We can rewrite 

%I = &%+,, (4.2) 

where 

in= l 
a - ao(tt) = 

a-l ~(uo(n)il-l)l. 
I=0 

(4.3) 

In so doing we implicitly understand that the framework in which we operate is that of the 
pseudodifferential calculus, see for example [25]. 

It is now an easy exercise to prove that the discrete spectral equation 

is transformed into the pseudodifferential one 

L(l)% = hl@n, 

where 

(4.4) 

L,(I) = a + ~ul(~)dn_lbn_I+, . . . iin_, 
i=I 

=a+fJ2,(t2) 
1 1 1 

a -ao(n -r) ’ a -U~(TI -I+ 1) “‘a -u~(~I - 1)' 
(4.5) 

l=I 

Proceeding in the same way for the other equations of system I we obtain the new system 
in differential form 

L(l)% = hl%, 

$% = (L;(1))+el* 
1.r 

(4.6) 

The subscript + appended to a pseudodifferential operator represents the purely differential 
part of it. The subscript - represents the complementary part. 
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Let us come now to the n dependence of the above equations. The operator L,, (I) in (4.5) 
depends on the coordinates of different lattice points. To deal with this complication, we 
introduce m 1 “fields” St, . . . , S,, , related to the “field’ au in the following way: 

Si (n) E Uu(n - i). (4.7) 

Then we can rewrite L, (1) as 

L,(l)=a+&(n) 1 1 1 

I=1 a-Sl(n)‘a-S/-l(n).‘.a-sl(n) 
(43) 

with the result that L, (1) is expressed in terms of fields evaluated at the same lattice point. 
Of course the fields Si are not independent. However, we will consider these fields as 
completely independent from one another in all the intermediate steps of our calculations 
and only eventually impose the condition (4.7). 

To further simplify the notation we will consider henceforth 
same footing as the couplings and write 

ai(n,. . .) s Ui(n)(. . .), Si(n, . . .) = $(n)(. . .), 

the lattice label n on the 

where the dots denote the dependence on tr,k, t2.k and g. So the expression of L I (n) gets 
further simplified to 

1 1 1 L=a+-&q_._..._ 
[=, a-s1 a-s1-l a -sI' (4.9) 

where, for simplicity, we have dropped the label (1) too. This simplified form is the one we 
constantly refer to throughout this and the following section. 

A similar treatment can be applied to the second linear system as well. Therefore the 
information concerning matrix models can be stored in two differential linear systems 
+ the$rst$ow equations (2.24a)-(2.24d). The former determine the dependence on the 
couplings, while the latter fix the dependence on N. Therefore what we have accomplished 
so far is the separation of the dependence on N from the dependence on the couplings. 

From now on we refer to the consistency conditions 

$L = ](L’)+, Ll, (4.10) 
r 

where tr = tl,r. (4.10) are integrable hierarchies, [26,27], which are classified by the number 
2m of fields. The pseudodifferential operator L in (4.9) is the relevant Lax operator. 

We can easily locate these hierarchies in a well-known framework. In fact L is nothing 
but a particular realization of the KP operator 

l=I 

In general, WI are unrestricted coordinates, while in the realizations (4.9) they are precise 
functions of the fields at and SI and their derivatives. But that is not all, for one can obtain new 
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integrable hierarchies via hamiltonian reduction. Each integrable hierarchy characterizes 
a different model. In the case of a reduced hierarchy, we call the corresponding model 
a reduced model. These reduced models will be shown to essentially coincide with the 
constrained ones. 

The results can be synthesized as follows. 

Summary. Starting from the Lax operator (4.9) with given m one can show that: 
(1) there are m + 1 distinct differential integrable hierarchies which are obtained by sup- 

pressing successively the fields S[ with the Dirac procedure; 
(2) of each such hierarchy it is possible to write down the relevant Lax operator; 
(3) at the end of this cascade procedure we find the (m + 1)th KdV hierarchy. 

Therefore for every p = m + 1 we have p systems or hierarchies, denoted henceforth 
with the symbol Sk, where 1 counts the number of non-vanishing S jields, 0 5 1 5 m. In 
particular the case 1 = m corresponds to the 2m-jield representation of the KP hierarchy, 
while 1 = 0 corresponds to the p-KdV hierarchy. 

The above is general and holds for the more complex systems with m > 2. The general 
case was treated in [26] (see also [24]). 

4. I. Examples: The KdV and Boussinesq hierarchies 

The simplest example of L, (4.9) corresponds tom = 1. It gives rise to the NLS hierarchy 

1 
L=a+a~--- a -sl' 

(4.11) 

If we impose the constraint St = 0, the second Poisson structure can be reduced via the 
Dirac procedure and leads to a classical version of the Virasoro algebra. The corresponding 
integrable hierarchy is the KdV hierarchy. Later on we will need the recursion relations for 
the flows of this hierarchy. They are introduced as follows. Let 

6 &a 
F2k(X) = - &z(x) 

(4.12) 

where H2k are the Hamiltonians, whose explicit form can be derived from the Lax operator, 
[24,26], and a = al. Then, imposing the compatibility between the two Poisson brackets, 
characteristic of the hierarchy, we find the recursion relation for the flows 

aa 
- = FGk.2 = DF hk, 
ask+1 

DF = a3 + 4aa + 2a’ (4.13) 

with F2 = a. 
The simplest integrable system that appears in matrix models after the NLS system is the 

four-field representation of the KP hierarchy (m = 2). It naturally leads, via reduction, to 
the Boussinesq hierarchy. Let us describe the latter as concisely as possible. The Boussinesq 
system is described by two fields al and ~2. The Lax operator is 

(4.14) 
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The second Poisson structure is nothing but the classical W3 algebra. The second flow 
equations are 

a 
--al = 2a; - a;l, 
at2 

+a2 = a;’ - gap; +a;“). 
2 

This is known as the Boussinesq equation (in parametric form) and it is the first of an 
integrable hierarchy of equations (the Boussinesq or 3-KdV or Si hierarchy). 

Like in the KdV case, we give the recursion relations that allow us to calculate all the 
flows. Let us define 

6K 
F,(x) = - 

Affr 

dUl(X)’ 
G,(x) = ___ 

b(x) ’ 
r # 3n. 

Then imposing the compatibility of the two relevant Poisson brackets, we find the following 
recursion relations: 

aal 
- = 3G;,, = 
at, 

DGGG~+DGF F,, (4.16) 

aa:! =3F’ 
at, 

,+3= DFGG~+DFFF~ (4.17) 

with Fl = 1, G I = 0 and F2 = 0, G2 = 1. The differential operators are: 

DGG = 3a2a + 2a; - ala2 - 2a;a - a: - a4, (4.18a) 

DGF=~~~+~LI~~+LI;, (4.18b) 

DFG = 2a;a + a” 2 - ~(~Iz,Lz; + afa + 2~~ a3 + U? + 3a;‘a + 3~; a2 + a5), 

(4.18~) 

DFF = a4 + al a2 + a; + 3a2a. (4.18d) 

5. Correlators in reduced models 

In this section we show that, starting from the p-KdV or Sj hierarchy and borrowing some 
information from matrix models, we can define models, i.e. we can define (and compute) a 
full set of correlators - which turn out to essentially coincide with the constrained models 
we will meet later on. Since the construction, however, in this section is somewhat heuristic, 
and, in particular, it does not permit us to carefully fix all the normalizations, we prefer to 
distinguish these models from the constrained two-matrix models of the following section: 
as they are based on reduced hierarchies, we refer to them as reduced models. We call MIp 
the reduced model based on the p-KdV hierarchy. In presenting the reduced models before 
the constrained two-matrix models, which are the true objectives of our research, we follow 
a historical and, hopefully, pedagogical order. 

The essential definition of the reduced models is as follows: we define the correlators 
by identifying the field at with the two-point function (rt tt ), i.e. we borrow from the 
matrix models (Eq. (2.23)), and differentiate (or integrate) at with respect to the couplings, 
as necessary. Moreover, we only consider the dependence on the rk = tl,k couplings and 
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disregard the remaining ones. At this point the flows of the relevant hierarchy allow us 
to calculate the correlators, at least up to some constants - we are going to see some 
examples later on. The reason for this is as follows. A part of the information concerning 
the coupling conditions is in fact stored in the differential system of the model: the Lax 
operator inherits the information contained in the second equation of (2.13) via the number 
of non-vanishing diagonal lines of the original Q( 1) matrix. Therefore, it is not surprising 
that the flow equations are almost enough to determine the CFs. However, not all the 
information concerning the coupling conditions is contained in the differential hierarchy 
which characterizes the model, the first equation of (2.13) is not, and this is reflected in the 
undetermined constants that appear when we try to calculate the correlators. 

Let us see this point in detail in an explicit example. 

5.1. The KdV hierarchy and the associated Gz model 

We showed in Section 4 that we are allowed to impose the constraint S = 0 on the NLS 
system while preserving integrability. In other words there is a consistent subsystem of the 
NLS system, of which we can easily compute the flows, (4.13). These are the KdV flows. 
We recall that only the odd flows survive the reduction. Therefore the t2,, are disregarded. 
It is therefore natural to forget to = N as well. 

To start with let us define the critical points for this model: 
The kth critical point of the .62 model are dejined by 2(2k + l)rzk+t = -1 and t/ = 0 

for1 # 1,2k+ 1. 
For the origin of this terminology and further properties of critical points in matrix models 

see [22]. We will see next that the above critical point corresponds to a two-matrix model 
with a VI potential of order 2k + 1 and a V2 potential of cubic order. Let us notice (1) that the 
correlators of M2 at the various critical points are functions of tl alone; (2) that in order to 
preserve the homogeneity properties at the kth critical point we have to set y = yt (2k + 1) 
in (2.29). 

In the following we study the first critical point, k = 1. On the basis of the assignments 
of Section 2.3 we have [a] = [tl] = 2~1, in genus 0. Therefore it must be: a - tl. The 
proportionality constant can be absorbed with a resealing (provided it is non-vanishing, 
which is the case as we shall see). So we start from the position 

a = tl. (5.1) 

Then we have: 

Lemma 5.1. As a consequence of (5.1) the functions F2,, relevant to the KdV hierarchy 
are given by 

Fzn = Ea(n, h)t”-3h, n 2 3h, 
h=O 

where 

(5.2) 
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2”-t (2n - l)!! 
a(n, h) = - 

12hh! (n - 3h)! ’ 
(5.3) 

Proo$ We insert the expression (5.2) into (4.13) and obtain the recursion relation 

- 
u(n + 1, h) = (n - 3h 

2n 6h + 1 
+ 2)(n - 3h + 3)u(n, h - 1) + 2 n _ 3h + 1 ah h) (5.4) 

for the coefficients u(n, h). One can immediately verify that (5.3) is a solution of (5.4), but 
it is not unique. While integrating (5.4) one has to specify what bh = u(3h, h) are Vh. The 
latter are the coefficients of (u’)*~ in F6h and satisfy the recurrence relation 

3hb/, = 2(6h - 1)(6h - 3)(6h - 5)bh_l, bl = 5. 

One immediately gets (5.3). This ends the proof of the lemma. 0 

Proposition 5.2. The exact one-point correlutors of the 
point are 

model at the first critical 

(r2n-1) = f&l)h = h?$&n'T3; ~!;~!fn-3h+l. II > 3h - 1, (5.5) 
h=O 

where the genus expansion is explicitly exhibited. 

Proof (partial ). We have simply to recall that F2,, = ( tzn_ 1 q ) and integrate over tl . We 
obtain (5.5) for n L 3h. The values of (r@_s)h (i.e. n = 3h - l), which are obtained by 
simple extension of this result, are also correct, but strictly speaking they do not follow 
from the previous argument: they are pure integration constants and cannot be obtained 
from the flows alone. We will be able to completely justify Eq. (5.5) only by means of the 
W constraints. It is in fact the W constraints that completely determine such constants. 

5.2. W constraints of the M12 model 

Some information concerning the coupling conditions is not contained in the differential 
KdV hierarchy. In order to retrieve it we have to use the W constraints. The point is that 
they cannot be the same as in the unreduced models, since the hierarchy underlying the 
model has changed, and we recall once again that the W constraints are based on the flow 
equations. Therefore we have to reconstruct efictive W constraints on the basis of the 
reduced hierarchy. Let us argue as follows. In reduced models we are interested in solutions 
that do not depend on the second sector (i.e. on t2,k). If we look at Eq. (2.25), we see that 
such solutions should therefore satisfy the W constraints of the form 

C”‘(l)ZN = 0, n r>l; _ n > -r. (5.6) 

Consequently, we look for W constraints of this type, with generators belonging to a W 
algebra, which are however compatible with the KdV hierarchy. It is easy to see that the 
universal generators in (2.25), (see [ 15]), do not satisfy the KdV flows. We find instead: 
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Proposition 5.3. The effective W constraints for fiz take the form 

L,Jz=O, n 2 -1, 

where: 

179 

(5.7) 

(5.X) 

These generators satisfy the commutation relations qf the Virasoro algebra. 

ProoJ: Let us prove first that (5.7) are in agreement with the KdV flows. To this end we 
differentiate (5.7) with n > 0 with respect to tl. Using the definition of F2k, we can write 
(remember the notations introduced after Eq. (4.1)) 

W + l)t2k+l F2k+2n+2 + a-’ F2,,+2 

k=O 

F2+2k + F2k+2ap’F2+2k + a-’ F2k+2F2n_2k 
> 

= 0. 

Here a-’ is understood in the sense of the pseudodifferential calculus and denotes indefinite 
integration (see below for further specifications). Now we apply to it the recursion operator 
DF. What we obtain, by using Eq. (4.13), is nothing but the constraint L,+l fi = 0 
differentiated twice with respect to X. To see this we have to apply the remarkable formula 

F2n+4 = F;n+2 + 3F2F2n+2 

II - I 

+xt2F2k+2F;h_2k - F;kf2F;n_2k + 4F2F2k+2F2+2k - F2k+2F2n-2k+2)3 

k=O 

which can be obtained once again from the recursion relation (4.13). As for the cases 
n = 0 and n = -1, which have not been included in the above argument, they can be 
explicitly verified. 

What we have done so far amounts to saying that starting from L_ t fi = 0 and succes- 
sively applying the operator 0 = ae2DFa, we obtain all the L,,1/z = 0. Here we have 
to exercise some care with the double integration a-2. a-’ represents an indefinite integra- 
tion which preserves the homogeneity properties. This is a perfectly well-defined operation 
unless the output of it has degree 0. In such a case a numerical integration constant may 
appear. Now, in Z- ‘I2 L, Z’12 there appear contributions of degree 2y( 1 - h) + 2nyl, with 
n = 0,1,2.... So, since y and yt are generic numbers, the only dangerous case (in the 
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above sense) is when h = 1, n = 0. In other words when we pass from L-1 fi = 0 to 
Loz/z = 0 by applying 0 we are not guaranteed that the appropriate constant is given by 
the & present in LO. However, at this point we make the request that [L 1, L_ 11 = 2 Lo. and 
this unambiguously fixes such constant. It remains for us to justify L_ t fl = 0 (which is 
often referred to as the string equation) or rather the term - t: in L-1. From the degree 
analysis one sees that the only possible polynomial of the couplings one can write is tt. Its 
coefficient is determined by the requirement that, applying the recursion device to L- 1, one 
gets Lo. 

Finally, we do not look for higher tensor constraints since Eq. (5.7) is enough to determine 
everything. 

On the basis of Eq. (5.7) one can complete the proof of Proposition 5.2. 0 

5.3. The Boussinesq hierarchy and the associated 23 model 

The 3-KdV or Boussinesq hierarchy WAS introduced in Section 4.1 as a reduced hierarchy. 
The corresponding model is denoted M3. It is described by two fields al and a2 and is 
specified by the Lax operator 

L = a3 +a13 +a;!. (5.9) 

In the Boussinesq hierarchy the t3k flows with k = 0, 1,2, 3 . . . do not appear. 
The correlation function interpretation of the fields a1 and a2 is given by Eq. (2.23) and 

the first equation of (4.15): 

at = (rare), 2a2 = b1t2) + (~ITI~I). (5.10) 

Now we proceed as in the KdV case (but skip many details). The first critical point is 
defined by 4t4 = -1, rk = 0, k > 4. This implies in particular that y = 4yt and that 
the correlators will be functions of tl, t2. Next, the degree analysis shows that al - t2 
and a2 - tl . An elementary use of the first equation of (4.15) shows that, up to an overall 
multiplicative normalization constant, we can choose 

a1 = 6t2, a2 = 3rt. (5.11) 

This will be our choice (as it is consistent with the W constraints and the definition of the 
critical point). Now it is relatively easy to use the recursion relations of the flow equations 
to compute the correlation functions. 

Proposition 5.4. The exact one-point correlators of M^j are 

(53n-2+~) = 2(%2+r)h. 
h=O 

(r3n-2+c)h 

= np’8h~pC)‘3 A2 

3n-3jf2+6)/2-3h(_I)(n-j+c)/2-h 

j=O 
3n--j-2+rcn _ 1 + E)! 

n-j+eE2Z 
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x (3n-3j+2+~-6h)!! 

(3n-3j+2+r-Sh)!! 
(3n - 3 + 2E)!!! (3n - 2 + 2E)!!! 
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x (3j)!!!((3n-3j+E)/2-3h)!!!((3n-3j+2+c)/2-3h)!!!’ 
(5.12) 

where e = 0, 1 and n!!! is the 3 x 3fuctorial, i.e. n!!! = n(n - 3)(n - 6) . . . up to either 

I or 2 or 3. By convention O!!! = (-I)!!! = 1, and l/n!!! = l/n!! = Ofor n 5 -2. As a 
consequence in the above formula the exponents of tl and tz are always non-negative. 

Proof(skerch). One has to remark first that, while the contributions from two contiguous 
genera differ by 8~1, the recursion operators DGG, . , DFF contain contributions that 
differ by 4~1. It follows that in G,, Fr there will appear ha(f-genus contributions. Therefore, 
at the first critical point, we have to start from the ansatz (case 6 = 0) 

G3n+1 = FGy/;;. G;?‘, = c , , ; 2 cr.(n s,2) [J t(3n-3j-1)/2-2,5 , (5.13) 
.s=o ,=o 

n-je2Z+l 

&+I = 2 Ft${, F(s/2’ = c Bj(n, s/2) t{ li3n-3jj/2-2.5, 3n+l 
(5.14) 

s=o ,=o 
n-jt2Z 

where s is the half-genus label, i.e. s = 2h, and the exponents of tt and t2 are always 
non-negative. The half-genus contributions must not appear in the correlators, thus we must 
have the physicality conditions 

Clj(n, ;S) = 0, @j(n, 4s) = (j + l)aj+l(n, i(s - l)), s E 2Z + I. (5.15) 

Plugging (5.14) and (5.13) into (4.16), (4.17), and using (5.15) we find the following recur- 
sion relations for the coefficients 

3joj(n+ l,h)=3(3j - l)oj-t(n,h)+ 12j&(n,h) 

+ 2j(j + l)(j +2)Bj+z(n. h - 1) (5.16) 

for n - j E 22, and 

3jpj(tt + 1, h) = 3(3j - 2)fij-l(n, h) - 24jaj(n, h) 

- 5j(j + l)(j + 2)oj+z(n, h - 1) 

- ij(j + l)(j + 2)(j + 3)(j +4)aj+4(n, h - 2) (5.17) 

for n - j E 2Z + 1. These relations can be integrated and give the following result: 

1 
aj(n, h) = - 

2(3"-3j-1)/2-3h(_l)(n-j-1)/2~h (jn _ 3j _ 1 -6h)!! 

4ghh! 3”-j-I(n - l)! (3n - 3j - 1 - 8h)!! 
(3n - 3)!!! (3n - 2)!!! 

x (3j)!!! ((3n - 3j - 1)/2 - 3h)!!! ((3n - 3j - 3)/2 - 3h)!!!’ 
n-jE22+1; 
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1 
Bj(flt h, = $$ 

2(3n-3j)/2-3h~_l)(n-j)/2-h (3n _ 3j - 6h)!! 

3n-j-1(, - l)! (3n - 3j - Sh)!! 
(3n - 3)!!! (3n - 2)!!! 

x (3j)!!! ((3n - 3j)/2 - 3h)!!! ((3n - 3j)/2 - 3h - 2)!!!’ 
n-jE2Z 

Now we recall that 

(ktl)h = 3GF!,, (rrt2)h = 6F,‘;; 

and integrate w.r.t. tt and t2 the first and second expressions, respectively. Comparing the 
results we find (5.12). Just as in the KdV case we have to treat separately the case when 
both exponents of tl and t2 in (5.12) vanish. The coefficients given by (5.12) are the correct 
ones, but they have to be checked by means of the W constraints. 

Likewise we can compute (~3~~1) (case E = 1). 0 

The effective W constraints in the case of the %s model are found once again by requiring 
that they be consistent with the Boussinesq flows and that the W generators form a closed 
algebra. 

Proposition 5.5. The effective W constraints for the M^j model are 

L[‘l z’/3 = 0, 
n r=l,2, nl-r, (5.18) 

where 

n 3 c ktk 

&=I 

+ ; c kltktl + ;&J vn, 
k.1 

k+/=-3n 

&p = ; E 11120, tiz 
a 

/I ,/2= I atl,+12+3n 
+; c a2 

lti- 
i.k,j 

at& atj 

I-k-j=-3n 

+& c a’ l c 
+27 

lkjtltktj Vn. 
1% &l&&j 

1.k.l 
I+k+j=3n lfk+j=-3n 

In these expressions summations are limited to the terms such that no index involved is 
either negative or multiple of 3. The above two sets of generators form a closed algebra, 
the W3 algebra, 

[L[‘l L[‘l] = (n - m)L[‘l 
II’ m n+m + i(n3 - nVn+m,O, 

[I,“’ LL21] = (2n - m)Lr2’ 
n’ m n+t?l* 

[LL2’, L1,2’1= -&(n - m)((n2 + m2 + 4nm) + 3(n + m) + 2)L5, 

+ $(n - m)An+m + &jn(n2 - l)(n2 - 4)6,+,,0, 
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where 

A, = c L:“Lb”, + c L;&‘. 
ks-I k?O 

This corresponds to the quantum W3 algebra with central charge 2. 

Proof (sketch). One can prove the consistency of the Boussinesq flows with the above 
constraints in the following way. Call K, = Z-‘/” LL”Z’/‘. Then, for example, one can 
check that 

;D 
a 6, a& a*&+, 

GFat + Dccar = ~ 
2 I at; 

and so on. In fact it is not necessary to prove such equalities for any n > - 1, we simply need 
to do it for the first few cases, for K, = 0 for n = - 1.0, 1.2 implies K, = 0, Vn > - 1 due 
to the Virasoro algebra structure. The same can be done for the higher-order constraints. 
Constants and polynomials in the couplings which appear in the generators can be fixed by 
simply requiring algebraic closure. 0 

5.4. Other models 

Let us generalize what we have just done for the Boussinesq hierarchy to the _6?,, (or 
pth KdV) models. The general recipe is as follows. One must first of all disregard all the tk 
with k a multiple of p; the first critical point is 

(P + l)t,+l = b. tk = 0, k>p+l, (5.19) 

where b is any number. The degree assignment is 

[tk] = p + 1 - k, [Fth)] = (2~ + 2)(1 - h), [a(“)] = 2.. . , [a(O) ] = I pl p, 
(5.20) 

where a!‘) is the genus 0 part of ai and we have set, for simplicity yt = 1. The CFs will be 
homogeneous functions of tl , . . . , tp_l, which constitute the small phase space. 

In all the cases the method to compute CFs is the same as before. We do not have however 
to re-do literally the same steps as before. A short cut consists of fixing the form of the fields 
by means of effective W constraints, which in turn are determined imposing compatibility 
with the relevant flow equations. Once this is done the CFs can be obtained from the flow 
equations. 

We write down hereafter the W constraints for the general z[, model. The W constraints 
are 

Ll’lZ’lP = 0, 
n r=l,..., p-l, n>-r. (5.21) 

Compact formulae for the above generators can be written down by means of the bosonic 
formalism. Let us introduce the current 
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J(z) = -&trz’-l + ; p;. 
r=l r-1 r 

Then 

LI’I = 
n ~Resl,o(L[“(Z)ZPn+‘), L[‘l(z) = 2- : J(z)‘+‘. 

P r+l 

The normal ordering in the last definition is the one between tr and a/at,. The derivative is 
always supposed to stay at the right. These generators close over a W, algebra with central 
charge p - 1. In particular we have 

+ i c kltktt + 
p2 - 1 
-6 

2~ k+i=-np 24p n’O’ 

In the above formulae n is any integer, and multiples of p as well as non-positive integers 
are excluded among the summation indices. 

We can extract particular exact formulae as follows: we write down the dispersionless 
version of the constraints L!!iZ’lP = 0, with r = 1, . . . , p - 1; this equation gives a 
recursion relation for (rr ), r = 1, . . . , p - 1, in terms of (q) with 1 < r, which can be 
solved and gives: 

r-2 
X c 10) 

F),... /(I’ 

, . . . lj:‘qi, . . . trll) c b-r+s” 
’ s,=o 

, s, 
tI”+...+ljj’+r,-sj(p+I)=rj+l 

(5.22) 

Although this result has been obtained from the genus 0 approximation, it is an exact result. 

In particular, setting b = - 1, we have 

(Sl) = 5 c kltktt. 
k.l;k+l=p 

(5.23) 

As a consequence 

(51Tkrl) = Pkl&,,-k, 1 (k,lip-1, (5.24) 

which specifies the metric of the corresponding topological field theory [22]. 
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5.5. Higher critical points 

In all the previous examples the first critical point has been characterized by a depen- 
dence of the basic fields on the couplings specified by homogeneous polynomials with 
non-negative integer powers. Higher critical points are characterized still by a homoge- 
neous dependence, but with rational and/or negative powers of the couplings. 

The procedure to compute correlation functions is always the same: a short cut to arrive 
at the results is to use simultaneously W constraints and flow equations. With a good deal 
of perseverance we could probably arrive at exact correlators as in the previous subsections. 
However, in order to give an idea and for future reference, we think it is enough to present 
a few partial results. 

Let us start with the KdV model. The (Kazakov’s) critical points were defined in Section 
5. I. At these points the degree assignments (setting ~1 = 1) are 

[r/l = 2k + 1 - 1, [FCh’] = 2(2k + l)(l - h), [aCh)] = 2 - (2k + 1)2h. 

(5.25) 

Indeed, contrary to the first critical point, we have to expect non-vanishing contributions 
from all genera for the field a = a(O) + a(‘) + aC2) + f . We find the following results: 

.(I) - - jI(k)tL2. 

k! 
a(k) = 

2k-1(2k - 1)“’ . . 

where 

y(k) = &(k - 1)(32k3 - 72k2 + 177k - 77). 

Knowing these formulae one can calculate the correlators in genus 0,l and 2. The expression 
for a(‘) is also in Ref. [29]. 

Higher critical points of more complicated models can be found in [22]. 
The models &iP have a topological field theory interpretation. The corresponding topo- 

logical field theories are easily identified with those of the A series in the ADE classification 
[22]. The latter are known to be based on p-KdV hierarchies. Therefore, what we have 
achieved in this section is a new presentation of this old subject, in fact a very powerful pre- 
sentation since it has allowed us to calculate new all-genus expressions fcr the correlators. 
However, if we look at this section not from the point of view of topological field theories 
but from the matrix model point of view we cannot yet be satisfied. Although we have used 
the reduced integrable hierarchies obtained in Section 4 from two-matrix models, and we 
have used other matrix model inputs, a direct connection between two-matrix models and 
the results found in this section, although very plausible, has not yet been established: in 
particular some normalization constants have been arbitrarily fixed and the identification 
al = (~1~1) deserves a safer ground. 
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The purpose of the next section is to provide such connection. 

6. Constrained two-matrix models 

In this section we want to introduce and analyze constrained two-matrix models that are 
characterized by p-KdV hierarchies. We are going to study in particular detail the ones 
based on KdV and Boussinesq hierarchy. In the previous two sections we learned that, in 
order to end up with the pth KdV hierarchy, we have to impose the constraints Si = 0, 
which amounts in the Toda lattice formalism to impose that the diagonal elements of the 
matrix Q( 1) vanish identically. We will just impose this constraint on the model M,, ,P2, 

and call the two-matrix models so obtained Miy’.,z. The main result of this section is that 

the reduced models $?,, can be embedded in the renormalized MFi, p. 
A remarkable aspect of our derivation is that we obtain all the res’ults via the$ows of 

the Toda lattice hierarchy and we never abandon the framework of two-matrix models. 
A by-product of this section is a new way to derive p-KdV hierarchies from Toda lattice 
hierarchies. 

6.1. The constrained two-matrix model Mfi and the KdV hierarchy 

The simplest interesting model is MC” 3 *. Let us start from the coupling conditions of the 
model M3,2 of Section 3.2, and impose’the condition so(n) = 0. 

6.1.1. The coupling conditions in MS; 
Remember that KdV, at the first chtical point, is expected at t2 = 0 and 6t3 = -1. 

Imposing this and 

so(n) = 0 

Eqs. (3.8) become, in genus 0, 

2cb2 - R2 = 0, bl = 0, al = tl - (cs1/2~2), 

R = -n/c, ho(n) = --s1/232, 2s2R + cal = 0. 

Setting for simplicity s1 = 0, one gets in particular 

(6.1) 

(6.2) 

al = tl. (6.3) 

The importance of (6.3) is that, from the constrained coupling conditions, we have ob- 
tained al = tl, a result which was postulated in Section 5.1 on the basis of plausibility 
arguments. 

Remark 6.1. The particular values chosen for SI, t2, t3 are not important. Other choices 
would not change qualitatively the results, but only renormalize them either additively (sl) 
or multiplicatively (t3, t2). 
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Remark 6.2. The last equation of (6.2) implies 

t] = (2s~/c*)n. (6.4) 

Conditions (6.3) and (6.4) have to be imposed as a last condition on the correlators after 
all the calculations have been carried out (see below), therefore the fact that tI - n does 
not interfere with differentiating or integrating with respect to n. The rather mysterious 
condition (6.4) may have an interesting topological held theory interpretation, see 1231. 

Remark 6.3. We stress that it is irrelevant whether at = tl is the unique solution of the 
coupling conditions and that it be found in genus 0. What is important is that we be able to 
impose it (at every genus) without breaking integrability. This is in fact what we are going 
to show next. 

6.2. KdVJows from Toda flows 

We show next that we can extract the KdV flows directly from the Toda lattice hierarchy. 
We recall that in M3.2 

Q(l) = I+ + C(a0ti)Ei.i +al(i)Ei,i-l). 
i 

Setting Q z Q(l), we have: 

Lemma 6.4. In M3.2 the formulae obtainedfrom the Toda lattice hierarchy and from Eq. 
(2.17) 

(~Iu) = Tr([Q+, Qkl) (6.5) 

gives rise to thejows of the NLS hierarch.y. 

Proof We notice that, due to Eq. (2.23), we have 

aat -= 
ijtk 

Y&). 

This is the first ingredient. The second ingredient are the first flows (2.24a), which, in the 
M3.2 case, takes the form 

S; = (1 - Dc’)al, a; = al(Do - 1)St (6.6) 

(remember that we defined St (n) = ao(n - 1)). Here we have introduced a new notation, 
which turns out to be very convenient in this kind of trade. For any discrete function ,fN we 
define 

(hf)N = fN+l. 

We will also use the notation eao instead of Do, with the following difference: Do applies 
to the nearest right neighbour, while eaQ is meant to act on whatever is on its right. 



188 L. Bonora et al. /Journal of Geometry and Physics 20 (1996) 16&194 

Using this notation we can write Q as follows: 

Q = eao + DOS) + ale -%. (6.7) 

We also remark that the sum, C:!J, in Tr is exactly the inverse of the operation Do - 1. 
Now it remains for us to evaluate the right-hand side of (6.5). Hereon we give an example 
(a more complete proof will be provided elsewhere): 

aal - aTr(lQ+, Q31) ats - atI 

= +(Doaia~ + a, Di’al + alal + (DoS~)~U~ + Sful + al SI DoS1) 
I 

= (u;’ + 3ut + 3SFal + 3Sla;)‘, 

which is exactly the third NLS flow for at. In order to find the flows for Si one has simply 
to differentiate 

s1 = a-‘(1 - qj-$21 

and use again the first flows. 0 

Using this lemma, it is now easy to conclude our argument. We pass to the Mh”l model 
setting Sl = 0. The odd flows of al reduce to the KdV flows in exactly the same form 
given by the recursion relations (4.13). Not only are these relations compatible with the W 
constraints of Section 5.2, but also the result at = tl , obtained from the coupling conditions, 
is, and coincides with our assumption (5.1). We conclude that the model ,& is embedded 
in the constrained two-matrix model Mpi, and that all the results obtained in Sections 5.1 
and 5.2 hold true for the latter. 

Remark 6.5. The second sector of M$‘i, i.e. the dependence on Sk, as well as the depen- 
dence on the bilinear coupling c, does not play a role in the above arguments. They can at 
most renormalize the final results (as noticed above). In other words, the second sector is a 
spectator. Whether and how it is possible to compute correlators of the second sector, i.e. 
correlators of uk, or mixed ones, is a question that we leave open here. 

6.3. The kth KdV critical point and Mg$, 2 

To confirm the result just obtained let us look at the kth KdV critical point (Section 5.5). 
This critical point turns out to be embedded in the model &I&, *. The relevant potentials 
in this case are 

vl(hl) = t2k+,h;k+’ +tlhl, V2(A2) = S2h: + Slk2, 

which entail the following coupling conditions: 

p’(l) + (2k + l)tX+l Q(1)2k + tl + cQ(2) = 0, 

~“(2)+2s2Q(2)+s,+cQ(l)=0. 
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The relevant equations one gets in genus 0 are: 

(2k + Ib2k+l y ( > 
a; + cbo + t] = 0, 

2s2bo + St = 0, 2s2R + cat = 0, 

One finds 

bo=-$. ( 1 
aI= - 

2 (2k + lM2k+1 

2s2bl + CR + n = 0. 

(y)-‘(+))““. 
Here, either we make the replacement tt -+ ?I = tt -SI /2s2 or simply set st = 0. Moreover 
we set (kth critical point) 2(2k + l)&+t = - 1. Then 

(6.8) 

This result coincides exactly with the analogous formula in Section 5.5. Substituting this in 
the flows we can calculate the KdV correlators for any critical point in genus 0. 

6.4. The renormalized two-matrix model Mi”i ( and the Boussinesq hierarchy 

We now want to repeat the same for the Boussinesq hierarchy. We have to start from the 
M$, but one soon realizes that things are not as simple as in the previous example. In fact 
an analogue of Lemma 6.4 holds, but setting a0 = 0 in the resulting flows does not lead 
to the Boussinesq flows. A significant change of strategy is necessary. But let us start once 
again from the coupling conditions for M 4.3. 

6.4.1. The coupling conditions in Myi 
The coupling conditions for the two:matrix mode1 M4,3 are 

R”(l) +4f4Q(1)3 + 3t3Q(1)2 + 2t2Q(l> + tt + cQ(2) = 0, 
792)+3~3Q(2)~+2~2Q(2)+st +cQ(l) =O. 

(6.9) 

These can be expressed in terms of the fields a~, a 1, ~2, bo, 61, b2, b3 and R. We expect to 
find the Boussinesq hierarchy for a0 = 0 and t3 = 0. The coupling conditions in genus 0 
then become 

cbx = -4t4R3, cb2 = 0, cbl = -2t2R - 12t4al R, 

cbo = -tl - l2t4a2, n + l2t4af + 2t2al + CR = 0, 3~3 R2 + ca2 = 0, 

6sjboR + 2s2R + cal = 0, s3(2bl + 6;) + 2s2bo + sl = 0, 

6s3bobl + 2s2bl + CR + n = 0. 

For simplicity we choose bl = 0 and st = 0, which leads to 

t2 0 

*’ = -6t4’ a2 = -m R=-2. 
C 

(6.10) 



190 L. Bonora et al. /Journal of Geometry and Physics 20 (1996) 160-I 94 

After determining bu = 0 and b3 we are left with two conditions of the type (6.4) among 
the couplings, which are irrelevant for the following developments. Different choices of bl 
and st would simply imply additive redefinitions (renormalizations) of tt and t2, therefore 
we ignore them. 

It is important that up to a global resealing (see below) we have found the same results 
that were assumed under (very) plausible arguments in Section 5.3, see Eq. (5.11). 

6.4.2. Boussinesqjows from TodaJlows 
As we have anticipated above, in the Ma,3 there is an analogue of Lemma 6.4. In partic- 

ular, from the Toda flows we can obtain the flows of the four-field KP hierarchy. However 
this is irrelevant to our problem, since, setting St = S2 = 0 does not lead to the Boussinesq 
hierarchy (or to any integrable hierarchy, for that matter). The reason is well known: the 
above conditions oblige the system to flow outside the manifolds of the flow equations. To 
preserve integrability we have to introduce in the original hierarchy a (presumably infinite) 
set of corrections. In field theory language we can say that the constraint a0 = 0 can be 
imposed without spoiling integrability only at the price of introducing a (presumably in- 
finite) set of counter-terms. The very important point is that this set of counter-terms can 
be exactly computed, after which the resulting model, referred to henceforth as the My{’ 
model, will accomodate the Boussinesq hierarchy. 

The recipe to obtain the result is as follows: 

(1) 

(2) 

(3) 

(4) 

Define the general matrix 

(6.11) 
ix1 

Assume as first flows 

Do& =ci,, &ii =Zi +Z._t, iz2 

(these are the usual first flows in which we have set tie = 0). 
Now impose 

Q3 = e3ao + 3aleao + 3a2. 

This equation and (6.12) completely determine cii in terms of al, a2, 

(6.12) 

(6.13) 

ii1 =a~ =al, &=&=a2-aa;, ci3 = a3 E -a; -at + ;ct;‘, 
,. ad ~24 G ;a;‘- ia;” + 4ala; - 2ala2 

and so on. Q is now to replace the matrix Q(1) of the model M4,3 with a0 = 0. It 
contains the right counter-terms to generate the Boussinesq hierarchy. 
To obtain the above, we use the following lemma. 

Lemma 6.6. Replace Q (1) with G in the Toda lattice hierarchy formulae and evaluate 
them at rii = Zi 
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aal -= 
ark 

$W~+, G”I) , k # 3n 
ir; =ai 

(6.14) 

and the like. Then these formulae provide a realization of the Boussinesq hierarchy. 

Proo$ We limit ourselves to a few examples (a more complete proof will be given else- 
where): 

aal -= 
at2 &‘W[e^+. 21) = (Doci2 + &)‘I&=& = 2a; - al,l, 

& =ai 

aal a -= 
at4 ;II1’NIP^+, G41> = ;a;’ _ ia;’ - 24 + ‘kZla2, 

i, =a, 
I aal 

hi =ai 
+,,=Ll;-af-$z; 

2 

and so on. These are the Boussinesq flows, even though not in exactly the same form as in 
Sections 4.1 and 5.3. In fact we have to multiply by 3 the at, a2 fields there to obtain the 
flows here. 0 

Remark 6.7. We should have allowed also for a field au in 0 and set it to zero at the end 
of the calculations. This could of course have been done but would not have changed the 
results. Setting au = 0 from the very beginning we have simply anticipated the result and 
simplified the formulae a lot. 

Remark 6.8. It is not surprising that we have found some disagreements in the normaliza- 
tions compared here in Sections 4 and 5. We have already pointed out at the end of Section 5 
that some identifications made there were likely to be arbitrary as far as the normalizations 
are concerned. 

Up to the normalization problem illustrated in the previous remark we can see that the 
jlow equations, the coupling conditions (6.10) and consequently the W constraints pertinent 
to the fi3 model can be embedded in the Mi”ir’ matrix model. If we set the critical point at 
12t4 = - 1 in (6.10) and multiply by 3 the fields at, a2 in Sections 4 and 5, we can simply 
transfer the results obtained there to Mi’j”. To be more precise, we summarize the results 
concerning the latter as follows: 

(i) The Boussinesq flows are given by 

aal 
at,= G,, = DGGG~ + DGFF~, (6.15) 

aa2 
F’ at, = r+3 = DFGGr i DFFFr (6.16) 

with F1 = 1, Gt = 0 and F2 = 0, G2 = 1. The differential operators are: 

DGG = 3a2a + 2a; - alEI2 - 2a;a -a;) - :a4, (6.17a) 
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DGF=ia3+2ala+a;, 

DFG = 2a;a + a;’ - 2(ala; + a@ + $a, a3 

+;a;” + a;/a + a;a2 + $a’), 

DFF = ia4 + al a2 + a; + 3aza. 

(ii) The coupling conditions imply, at 12~ = - 1, 

(6.17b) 

(6.17~) 

(6.17d) 

al = 2t2, a2 = tl. (6.18) 

(iii) The correlators are the same as in Section 5.5 except for a global factor of 3. In particular 
the right-hand side of (5.12) must be divided by 3. 

(iv) The W constraints appropriate for ML!:) are 

Ll’l z = 0, n r=l,2, nz-r (6.19) 

the generators being the same as in Proposition 5.5. But in order to reproduce the right 
correlators we have to compute them at 4t4 = - 1. In other words the location of the 
critical point gets renormalized. 

7. Conclusion 

The procedure introduced above for the Boussinesq hierarchy holds for any p-KdV 
hierarchy. We can always define suitable coordinates in the matrix G, which, inserted in 
the Toda lattice flows, generate the p-KdV flows. The recipe is just a generalization of the 
one given above. This is certainly a remarkable (and new, to our knowledge) result, which 
deserves further elaboration. 

Finally, we can draw the following conclusion: the p-KdV hierarchies are contained 
in specific constrained two-matrix models; once we impose the constraint, the Q matrix 
of the relevant model has to be suitably redefined (except in the 2-KdV case) to ensure 
integrability; the counter-terms can be exactly calculated and give rise to “renormalized” 
coordinates; in turn these coordinates, when substituted in the formulae of the Toda lattice 
hierarchy, gives rise to the p-KdV flows. The same procedure may well be applicable to 
extract from two-matrix models other hierarchies such as those studied in [30]. 

Appendix A 

Here are the exact 2 point CFs of the model M2.2. Let us first define the functions 

n l/2 (I-2k)/2 m p/2 

KTm(ff2’ ‘I’ 82’ y” y2) = cc c cc 2k+q(,, _ ;;;; _ /,),krq, 
I=0 k=O r=O p=Oq=O . . . 

1 

r!j!(r + k - 9) +i(p - l)!(l - 2k - r - j)!(i(l + p)- k - q - r -j)! 
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1 

103 

j!(l - 2k - r)!(r - j)!(i(l + p) - k - q - r)!(i(p -I) - q + k + r - j)! 

x(;(l + p) -k -q - j)! 
N 

$U+p)-k-q-j+1 
xa~-‘)/2+“+r n-l m-p k+r (p+l/?.)-k-r 

6 B2 YI Y2 ’ 

where ~2, PI, 82. ye, y2 were defined in Eq. (3.4). Then 

(mom) =Tr([Q(l)“, QCXI) = EI,m(w, PI. 82, YI, ~2). (A. 1) 
(GL,) =W[Q(lY, Q(lY!!l) = Fn.,(l,B~. BI, YI, YI). (A.2) 

Finally (a,~,) is obtained from (tnrm) with the exchange tk ff Sk for k = 1, 2. 
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